top of page

* indicates a mentee.


Seidel, S.* and D. Yang, 2023: Vapor-Buoyancy Feedback in an Idealized GCM. Revised for Journal of Climate. 


Ong, H.* and D. Yang, 2023: One Stone, Two Birds: Using Vapor Kinetic Energy to Detect and Understand Atmospheric Rivers. Revised. 

​Preprint: arXiv:2404.00772

Supplementary Video1, Video2, Video3

Ramírez-Reyes, A.* and D. Yang, 2023: The Moisture-Entrainment-Convection Feedback Can Lead to Spontaneous Tropical Cyclone Genesis. Revised.

Refereed publications

Yao, L.*, and D. Yang, 2023: Convective Self-Aggregation Occurs Without Radiative Feedbacks in Warm Climates. Geophysical Research Letters.

Yang, D., and S. Seidel*, 2023: Vapor Buoyancy Increases Clear-Sky Thermal Emission. Environmental Research: Climate

doi: 10.1088/2752-5295/acba39

Zhou, Y., S. Wang, J. Fang, and D. Yang, 2023: Global Impact of the Maritime Continent Barrier Effect on the MJO. Journal of Climate

doi: 10.1175/JCLI-D-21-0492.1

Yang, D., and co-authors, 2022: Substantial influence of vapor buoyancy on tropospheric air temperature and subtropical cloud. Nature Geoscience

doi: 10.1038/s41561-022-01033-x

Seidel, S.*, and D. Yang, 2022: Temperatures of Anvil Clouds and Radiative Tropopause in a Wide Array of Cloud-Resolving Simulations. Journal of Climate.

doi: 10.1175/JCLI-D-21-0962.1 

EarthArxiv preprint: doi: 10.31223/X52904

Ong, H.* and D. Yang, 2022: The nontraditional Coriolis terms and convective system propagation. Journal of the Atmospheric Sciences

doi: 10.1175/JAS-D-21-0219.1


Yao, L.*, D. Yang and Z.-M. Tan, 2022: A Vertically Resolved MSE Framework Highlights the Role of the Boundary Layer in Convective Self-Aggregation. Journal of the Atmospheric Sciences. 

doi: 10.1175/JAS-D-20-0254.1

Preprint: arXiv:2008.10158


Muller, C., D. Yang, G. Craig, et al., 2022: Spontaneous Aggregation of Convective Storms. Annual Review of Fluid Mechanics.


Reyes, A.* and D. Yang, 2021: Spontaneous Cyclogenesis without Radiative and Surface-Flux Feedbacks.  Journal of the Atmospheric Sciences. 

doi: 10.1175/JAS-D-21-0098.1

EarthArxiv preprint: doi: 10.31223/

Toms, B., K. Kashinath, Prabhat, and D. Yang, 2021: Deep Learning for Scientific Inference from Geophysical Data: The Madden-Julian Oscillation as a Test Case. Geoscientific Model Development.   

doi: 10.5194/gmd-2020-152

Yang, D., 2021: A Shallow Water Model for Convective Self-Aggregation. Journal of the Atmospheric Sciences. 

doi: 10.1175/JAS-D-20-0031.1

EarthArxiv preprint: doi: 10.31223/

Zhou, W.*, D. Yang and F. Song, 2020: Contrasting ITCZ changes over recent decades and under anthropogenic warming. Geophysical Research Letters. In press. 

Zhou, W.*, D. Yang, S. Xie, 2020: Amplified Madden-Julian Oscillation Impacts in Pacific-North America Region. Nature Climate Change

doi: 10.1038/s41558-020-0814-0

Seidel, S.* and D. Yang, 2020: The Lightness of Water Vapor Helps to Stabilize Tropical Climate. Science Advances.

doi: 10.1126/sciadv.aba1951


Press release: University News,, ScienceDaily, The Week, DOE Research Headline (May 12) and Live Science

Zhang, C., Á. Adames, B. Khouider, B. Wang and D. Yang, 2020: Four Theories of the Madden-Julian Oscillation, Review of Geophysics.

doi: 10.1029/2019RG000685

Yang, D. and S. Seidel*, 2020: The Incredible Lightness of Water Vapor.  Journal of Climate.

doi: 10.1175/JCLI-D-19-0260.1

EarthArxiv preprint: doi: 10.31223/

Recommended by Judith Curry in Week in Review.

Yang, D., A. Adames, B. Khouider, B. Wang, and C. Zhang 2020: A Review of Contemporary MJO Theories. The Multi-Scale Global Monsoon SystemIn press.

Nabizadeh, E., P. Hassanzadeh, D. Yang and E. Barnes, 2019: Size of the atmospheric blocking events: Scaling law and response to climate change. Geophysical Research Letters.

doi: 10.1029/2019GL084863

Press release:, ScienceDaily, and NSF

Zhou, W.*, S.-P. Xie, and D. Yang, 2019: Enhanced Equatorial Warming Causes Deep-Tropical Contraction and Subtropical Monsoon Shift. Nature Climate Change. 

doi: 10.1038/s41558-019-0603-9


Press release: Berkeley Lab,, and The Daily Californian

Yang, D., 2019: Convective Heating Leads to Self-Aggregation by Generating Available Potential Energy. Geophysical Research Letters.

doi: 10.1029/2019GL083805

Zhou, W.*, Zhao, M., & Yang, D. 2019: Understand the direct effect of CO2 increase on tropical circulation and TC activity: Land surface warming versus direct radiative forcing. Geophysical Research Letters, 46, 6859 – 6867. 

doi: 10.1029/2019GL082865

Yang, D. 2018: Boundary layer diabatic processes, the virtual effect, and convective self‐aggregation. Journal of Advances in Modeling Earth Systems, 10, 2163 - 2176. 

doi: 10.1029/2017MS001261

Yang, D., 2018: Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation. Journal of the Atmospheric Sciences, 75, 469–478.

doi: 10.1175/JAS-D-17-0150.1

Pritchard, M.S. and D. Yang, 2016: Response of the Superparameterized Madden–Julian Oscillation to Extreme Climate and Basic-State Variation Challenges a Moisture Mode View. Journal of Climate, 29, 4995–5008.

doi: 10.1175/JCLI-D-15-0790.1

Yang, D., and Ingersoll, A. P., 2014: A theory of the MJO horizontal scale, Geophysical Research Letters, 41, 1059 – 1064.


Yang, D. and A.P. Ingersoll, 2013: Triggered Convection, Gravity Waves, and the MJO: A Shallow-Water Model. Journal of the Atmospheric Sciences, 70, 2476–2486.

doi: 10.1175/JAS-D-12-0255.1

Yang, D. and A.P. Ingersoll, 2011: Testing the Hypothesis that the MJO is a Mixed Rossby–Gravity Wave Packet. Journal of the Atmospheric Sciences, 68, 226–239.

doi: 10.1175/2010JAS3563.1

Hu, Y., Yang, D., and Yang, J., 2008: Blocking systems over an aqua planet, Geophysical Research Letters, 35, L19818.

doi: 10.1029/2008GL035351

bottom of page